首页> 外文OA文献 >Experimental Study of an Axisymmetric Dual Throat Fluidic Thrust Vectoring Nozzle for Supersonic Aircraft Application
【2h】

Experimental Study of an Axisymmetric Dual Throat Fluidic Thrust Vectoring Nozzle for Supersonic Aircraft Application

机译:用于超音速飞机的轴对称双喉流体推力矢量喷嘴的实验研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An axisymmetric version of the Dual Throat Nozzle concept with a variable expansion ratio has been studied to determine the impacts on thrust vectoring and nozzle performance. The nozzle design, applicable to a supersonic aircraft, was guided using the unsteady Reynolds-averaged Navier-Stokes computational fluid dynamics code, PAB3D. The axisymmetric Dual Throat Nozzle concept was tested statically in the Jet Exit Test Facility at the NASA Langley Research Center. The nozzle geometric design variables included circumferential span of injection, cavity length, cavity convergence angle, and nozzle expansion ratio for conditions corresponding to take-off and landing, mid climb and cruise. Internal nozzle performance and thrust vectoring performance was determined for nozzle pressure ratios up to 10 with secondary injection rates up to 10 percent of the primary flow rate. The 60 degree span of injection generally performed better than the 90 degree span of injection using an equivalent injection area and number of holes, in agreement with computational results. For injection rates less than 7 percent, thrust vector angle for the 60 degree span of injection was 1.5 to 2 degrees higher than the 90 degree span of injection. Decreasing cavity length improved thrust ratio and discharge coefficient, but decreased thrust vector angle and thrust vectoring efficiency. Increasing cavity convergence angle from 20 to 30 degrees increased thrust vector angle by 1 degree over the range of injection rates tested, but adversely affected system thrust ratio and discharge coefficient. The dual throat nozzle concept generated the best thrust vectoring performance with an expansion ratio of 1.0 (a cavity in between two equal minimum areas). The variable expansion ratio geometry did not provide the expected improvements in discharge coefficient and system thrust ratio throughout the flight envelope of typical a supersonic aircraft. At mid-climb and cruise conditions, the variable geometry design compromised thrust vector angle achieved, but some thrust vector control would be available, potentially for aircraft trim. The fixed area, expansion ratio of 1.0, Dual Throat Nozzle provided the best overall compromise for thrust vectoring and nozzle internal performance over the range of NPR tested compared to the variable geometry Dual Throat Nozzle.
机译:已经研究了具有可变膨胀比的双喉管喷嘴概念的轴对称版本,以确定对推力矢量和喷嘴性能的影响。适用于超音速飞机的喷嘴设计是使用不稳定的雷诺平均Navier-Stokes计算流体动力学代码PAB3D进行的。轴对称双喉喷嘴的概念已在NASA兰利研究中心的喷气出口测试设施中进行了静态测试。喷嘴的几何设计变量包括喷射的周向跨度,腔体长度,腔体会聚角和与起飞和着陆,中爬升和巡航相对应的条件下的喷嘴膨胀率。确定了内部喷嘴性能和推力矢量性能,其中喷嘴压力比最高为10,二次喷射速率最高为一次流量的10%。与计算结果相一致,使用等效注入面积和孔数时,60度注入跨度通常比90度注入跨度更好。对于小于7%的注入速率,60度跨度的推力矢量角比90度跨度高1.5至2度。减小腔体长度可改善推力比和排放系数,但会降低推力矢量角度和推力矢量效率。将腔室收敛角从20度增加到30度,在测试的注入速率范围内将推力矢量角增加1度,但会对系统推力比和排放系数产生不利影响。双喉管喷嘴概念以1.0的膨胀比(两个相等的最小面积之间的空腔)产生了最佳的推力矢量性能。可变膨胀比的几何形状并未在典型的超音速飞机的整个飞行包迹中提供预期的排放系数和系统推力比改进。在中爬和巡航条件下,可变几何设计会影响所达到的推力矢量角度,但可能会提供一些推力矢量控制,可能用于飞机的调整。与可变几何形状的双喉嘴喷嘴相比,固定面积,膨胀比为1.0的双喉嘴喷嘴在NPR范围内为推力矢量和喷嘴内部性能提供了最佳的整体折衷。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号